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Abstract

Climate change is expected to have the greatest impact on the world’s poor. In the Sa-
hel, a climatically sensitive region where rain-fed agriculture is the primary livelihood,
expected decreases in water supply will increase food insecurity. Studies on climate
change and the intensification of the water cycle in sub-Saharan Africa are few. This
is due in part to poor calibration of modeled actual evapotranspiration (AET), a key
input in continental-scale hydrologic models. In this study, a model driven by dynamic
canopy AET was combined with the Global Land Data Assimilation System realization
of the NOAH Land Surface Model (GNOAH) wet canopy and soil AET for monitoring
purposes in sub-Saharan Africa. The performance of the hybrid model was compared
against AET from the GNOAH model and dynamic model using eight eddy flux tow-
ers representing major biomes of sub-Saharan Africa. The greatest improvements
in model performance are at humid sites with dense vegetation, while performance
at semi-arid sites is poor, but better than individual models. The reduction in errors
using the hybrid model can be attributed to the integration of a dynamic vegetation
component with land surface model estimates, improved model parameterization, and
reduction of multiplicative effects of uncertain data.

1 Introduction

Actual evapotranspiration (AET) is the only water flux that connects the atmospheric
and land water cycles (Hartmann, 1994). In semi-arid regions of Africa, AET is the
dominant component of the water budget and is highly variable across vegetation types
(Ramier et al., 2009). These changes can have dramatic effects on the interannual and
interdecadal variability of rainfall (Zeng and Neelin, 2000). A positive land-atmosphere
feedback between vegetation and rainfall, for example, has been observed in the west-
ern Sahel. A decrease in rainfall and natural vegetation, leads to an increase in sur-
face albedo and decrease in AET, which decreases moisture input to the west African
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monsoon circulation, thus contributing to persistent droughts there (Zeng, 2003). Un-
derstanding this important moisture flux and its relationship to rainfall is particularly
important in sub-Saharan Africa, where more than 70 % of the region’s livelihood is
rain-fed agriculture. Near real time AET estimates modulated by regional vegetation
can be a powerful tool to facilitate this endeavor.

Literature reviews of continental to global scale AET modeling techniques can be
found in Diak et al. (2004), Glenn et al. (2007), and Kalma et al. (2008). For the pur-
poses of this paper, modeling approaches can be divided into two general categories.
In the first category, remote sensing derived energy flux is combined with ancillary
meteorological data using simple relationships to estimate near real-time estimates of
AET as a residual of the energy balance. The remaining terms in the energy balance
equation (ground heat flux — G, sensible heat flux — H, and net radiation- Ry) can be
determined from empirical relationships with remotely sensed surface temperature and
vegetation. Remote sensing models which derive flux directly from empirical relation-
ships of meteorological and remote sensing data are not considered in this category.
Algorithms which produce global estimates of AET as a residual of the energy balance
are described in Nishida et al. (2003), Leuning et al. (2008), Mu et al. (2007a), and
Fisher et al. (2008). These models have been recently used in sub-Saharan Africa
to estimate water use efficiency for arid rangelands (Palmer and Yanusa, 2011) and
extrapolate biological nitrogen deposition from wildfires (Chen et al., 2010). One of
the greatest limitations of AET estimates inferred from satellite data is that they often
use once-a-day satellite overpasses and the evaporative fraction to extrapolate AET
estimates over longer time scales. The evaporative fraction is the ratio of AET to Ry-G,
which can be used to scale AET over the day (Mintz and Serafini, 1992). Early reports
showed errors in AET using this method to be 20—40 % from surface measurements
(Nichols and Cuenca, 1993). Improved satellite data and parameterization have re-
duced these errors, but persistent cloud cover and overestimation of net radiation due
to poor cloud filtering continue to make the application of this technique difficult in the
tropics.
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The second category of models, termed Land Surface Models (LSMs), can provide
near real-time, continuous and global estimates of AET using sophisticated process-
based techniques driven by assimilated ground, satellite, and reanalysis data (Rodell
et al., 2004). In the case of this paper, LSM’s are run offline (i.e. uncoupled to the
atmosphere). AET from these models is driven primarily by precipitation with latent
heat being solved as a residual of the water balance and corrected using assimilated
fields of the energy terms. LSM’s overcome the temporal limitations associated with
remote sensing based estimates of AET, because LSMs are driven by reanalysis fields
of surface climate. Land surface flux has been compared from several LSM’s at the
global level: Project for Intercomparison of Land-Surface Parameterization Schemes
(Henderson-Sellers et al., 1995), the Global Soil Wetness project (Dirmeyer et al.,
2006), and a remote sensing based and LSM inter-comparison (Jiménez et al., 2011).
The AMMA Land-Surface Model Inter-comparison Project (Boone et al., 2009) includes
LSM comparisons in Africa in order to better understand the impact of land surface
flux on the West African Monsoon. Two of the major drawbacks of LSMs is that their
strong theoretical framework often makes them less robust, due to conspiring factors
attributed to a multitude of data types (most importantly Ry) and empirically-based
parameters (Rosero et al., 2009).

The objective of this paper is to identify and integrate components from a remote
sensing based and LSM approach to improve estimates of AET. The integration of
near real-time remote sensing AET models with LSM AET can help maximize the ben-
efits of both approaches. For example, land surface temperature derived from remote
sensing data are used to recalibrate AET estimates from a soil vegetation atmosphere
transfer model in Olioso et al. (1999) and from a residual energy balance model in
Boni et al. (2001). AET estimates in this study are improved further downstream in
the modeling process by direct insertion, whereby the AET component of one model,
in this case one that drives canopy AET with regular remotely sensed vegetation, is
substituted with canopy AET from an LSM. The hybrid model is developed through
a series of exploratory exercises, given the fundamentally different approaches each
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model takes to estimating AET and the equally diverse strengths and weaknesses in
parameterization.

The Berkeley model (Fisher et al., 2008) is selected for integration with an LSM. This
model is driven primarily by vegetation controls on Rn. The Berkeley model is cho-
sen, because it has been shown to outperform other AET models in the tropics when
compared with eddy covariance flux tower data and it can be readily applied over large
areas using remote sensing and surface reanalysis data. In addition, it requires no cali-
bration (optimization) or spin-up. A major drawback to this model is that the soil and wet
evaporation components are highly empirical power functions which are driven by spe-
cific humidity, a notoriously uncertain parameter in surface reanalysis datasets. There-
fore, improvements in the Berkeley model can be made by further re-parameterizing
wet canopy and soil evaporation. The LSM used is the NCEP, Oregon State Univer-
sity (OSU), Air Force, and Hydrology Research Laboratory at NWS (NOAH) model
(Chen et al., 1996). NOAH is a community model which has undergone several inter-
model comparisons and ground-based validations, leading to vast improvements in
its parameterization since its inception at OSU. It is comparable to other LSMs when
modeling latent heat flux (LE) driven by AMMA Land Surface Model Intercomparison
Project forcing and parameters over large areas in western Africa (Boone et al., 2009)
and generally performs better than other LSMs under semi-arid (sub-Saharan Africa)
conditions (Hogue et al., 2005). The major limitation of the model is that the canopy
(transpiration) component of AET is driven by long-term monthly averages of the Nor-
malized Difference Vegetation Index (NDVI). Therefore, further improvements in NOAH
AET in semi-arid regions can be made by including a dynamic vegetation component.

In the first phase of the analysis, the Berkeley model is compared with flux tower data
to identify possible sources of error in model parameterization and to judge the perfor-
mance of the model across various land cover types in sub-Saharan Africa. A sensitiv-
ity analysis is then performed on the model inputs to guide model re-parameterization.
For example, identifying the parameters that represent a large source of model error
or insensitivity would justify re-parameterization or substitution of the parameter with
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long-term mean data. This type of exploratory analysis facilitates the development of a
hybrid model, which combines the canopy component of the Berkeley model and wet
canopy and soil evaporation components of the NOAH LSM. In the final phase of the
analysis, the combined model is evaluated using the flux tower data.

2 Methods
2.1 The Berkeley model for actual evapotranspiration

The Berkeley model is a modified version of the original Priestley and Taylor (1972)
model for potential evapotranspiration (PET). A complete description of the model and
bibliography can be found in Fisher et al. (2008). The Priestley-Taylor formulation for
PET reduces the advection term in the original Penman (1948) formulation to a simple
coefficient (@). The Priestley-Taylor model is therefore driven primarily by net radia-
tion and tends to perform best in humid areas and worse in moisture limited areas
(DehghaniSanij et al., 2004). The Berkeley model retains the original a (1.26) and
instead uses six parameters to modify PET:

al

LEg = fapm (1 =1, 1-f Ry-G

s = fom(1 = fwer)( C)A+V( n—G)

al

LEn = fofafrfiy(1 =1 R

c =Tclafriu( WET)A_H/( N)

al

LE, =1 f, R 1

1=Tc WETA+V( N) (1)

where fgy, fwet, Tc, fa, 1, and fy, are the soil moisture constraint, relative surface
wetness, fractional total vegetation cover, green canopy fraction, plant temperature
constraint, and the plant moisture constraint respectively. Table 1 lists each parameter
and the relevant equation used in the computation of latent heat (LE).
The equations have been arranged to express LE in terms of its three components:
bare soil evaporation (LEg), transpiration (LE¢), and wet surface evaporation (LE,). The
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psychometric constant (y: 0.066 kPa°C‘1), slope of the saturation-to-vapor pressure
curve (A), Ry, and G make up the Priestley-Taylor formulation for PET. Net radiation
and G are readily available from surface climate reanalysis or remotely sensed spectral
indices. Equation (1) is a modified version of the Fisher et al. (2008) model in which the
soil and canopy contribution to Ayare assumed to be a function of leaf area index and
fc according to Beer’'s Law (Kelliher et al., 1995). Here, Ry-G is discretized by NDVI,
which has been shown to be highly correlated with 7 (Sellers, 1987). Fractional total
vegetation cover is expressed as a linear function of NDVI, which is determined from
the red and near infrared bands of standard multi-spectral remote sensing platforms.
The transpiration component of LE has the greatest number of constraints. The
green canopy fraction is a biophysical constraint expressed as the ratio of the fraction
of PAR absorbed by the green vegetation (fapsr) to the total amount of PAR absorbed
by the canopy (fg). Photosynthetically Active Radiation (PAR) absorbed by green veg-
etation is a linear function of the Enhanced Vegetation Index EVI. The Enhanced Veg-
etation Index is another remotely sensed spectral index and is more sensitive to the
chlorophyll content of vegetation than NDVI (Gao et al., 2000). The plant temperature
constraint is a physiological parameter and assumes that vegetation photosynthesizes
at an accelerated rate until an optimal temperature (Topt) is achieved, after which ef-
ficiency decreases (June et al., 2004). The optimal temperature is determined over
the entire available time series and is analogous to “relative greenness” in the remote
sensing literature. It occurs during the primary growing season, when the daytime tem-
perature (Tyyax) at which plant investment in light energy (fapar) @nd the availability of
light (PAR) are high, and the vapor pressure deficit (VPD) is low. Surface temperature
data is readily available from reanalysis data. The plant moisture constraint is the ratio
of fapar t0 Maximum fppar OVer the available time series. It assumes that the amount
of light a plant absorbs varies with moisture availability: fapagr decreases only when
the plant is stressed, thus lowering transpiration when PAR is high. The effect of this
constraint on LE¢ is minimal, unless the plant is suffering from extreme moisture stress.
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The interception and soil components are governed by relative humidity (RH), which
can be determined from surface pressure and specific humidity reanalysis. It is as-
sumed that bare soil evaporates water at the potential rate (PET), provided that the soil
is saturated (Bouchet, 1963). When the soil is not saturated, relative humidity above
the surface decreases and latent heat decreases due to lower soil water storage. The
soil moisture constraint is a power function of RH and the vapor pressure deficit (VPD),
which acts to reduce the supply of water to the atmosphere as the soil dries. Midday
relative humidity and VPD are used, because these values show better results in the
original paper than daily averages. The theoretical justification is that the coupling be-
tween soil moisture and atmospheric humidity is strongest in the daytime when vertical
mixing is high. Similarly, fiye7 is a power function of relative humidity and indicates the
probability that the surface is wet; when relative humidity is 100 %, the soil and canopy
are completely wetted and evaporate moisture at the potential rate.

2.2 NOAH Model for actual evapotranspiration

The earliest version of the NOAH-LSM can be traced back to Chen et al. (1996), who
integrated an explicit canopy component with a simple soil water balance model devel-
oped at OSU (Pan and Mahrt, 1987). The model has undergone several revisions since
that time, including improvements to bare soil evaporation estimates with the introduc-
tion of skin temperature and a dynamic soil moisture component (Betts et al., 1997)
and to transpiration estimates with the introduction of a monthly fractional total vegeta-
tion cover climatology (Chen and Dudhia, 2001). The NOAH model also includes three
components of latent heat. Unlike the Berkeley model, where constraints are driven
primarily by changes in vegetation and atmospheric humidity, the NOAH model takes a
water balance approach driven primarily by precipitation. Each energy term (LEg, LE¢,
and LE,) is summed after constraints on PET have been computed. Potential evapo-
transpiration in the NOAH model (Ep) is an energy version of Penman (1948) with a
detailed description in Mahrt and Ek (1984).
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where LE (Wm'z) is the latent heat flux (actual evapotranspiration), @ is the fraction
of total soil moisture not used by the canopy (Mahfouf and Noilhan, 1991), B¢ is a
function of atmospheric and stomatal resistance (Jacquemin and Noilhan, 1990), W
is the water holding capacity of the canopy defined as the residual of water balance
terms, and S is the maximum water holding capacity of the canopy (calibrated con-
stant). As in the original Berkeley formulation, 7. is a function of LAI. It is computed
from a 0.15° resolution climatology of AVHRR NDVI (Gutman and Ignatov, 1998). Soil
moisture availability (8) includes a dynamic soil moisture component constrained by
the wilting point and the field capacity of the soil, both of which are functions of soil
texture. The constraints are elaborated upon in Table 2, while a more detailed de-
scription can be found in Chen and Dudhia (2001). The NOAH-LSM in this paper (ver-
sion 2.7.1) is driven uncoupled to the atmosphere by the 0.25° resolution Global Land
Data Assimilation System (GLDAS) forcing and paremeters (Rodell et al., 2004), en-
abled by the Land Information System (Kumar et al., 2006). Details on GLDAS forcing
data can be found on NASA’s Hydrology Data and Information Services Center web-
page (http:/disc.sci.gsfc.nasa.gov/hydrology), while details on the parameterization
datasets used can be found at http://Idas.gsfc.nasa.gov/gldas/GLDASvegetation.php.
Forcing data will be referred to as GLDAS for the remainder of the paper, while GNOAH
will refer to NOAH-LSM output driven by GLDAS forcing and parameterization.

The hybrid model developed in this paper sums the LE; and LEg components from
the GNOAH with LE¢ from the Berkeley model.

1556

HESSD
9, 15471587, 2012

Combining surface
reanalysis and
remote sensing data

M. Marshall et al.

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/1547/2012/hessd-9-1547-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/1547/2012/hessd-9-1547-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://disc.sci.gsfc.nasa.gov/hydrology
http://ldas.gsfc.nasa.gov/gldas/GLDASvegetation.php

10

15

20

25

2.3 Data processing and handling

The Berkeley model is run globally at a quasi-0.05° resolution daily time step from
2000-2008 for sub-Saharan Africa and is aggregated to a monthly time step for vi-
sualization and comparison purposes with field data. Daily values were aggregated
to monthly values for several reasons: (1) ground heat flux was not calculated in the
Berkeley model (ground heat flux is near zero in warm regions at a monthly time step),
(2) daily station flux data was often spurious or missing, (3) the vegetation data used
(see below) is extremely noisy at a daily time step and (4) dekadal to monthly timesteps
are adequate to address research questions in food security monitoring and other con-
tinental scale studies.

The Global Land Data Assimilation System uses 0.25° resolution climatological forc-
ing data for this exercise. GLDAS uses NOAA/GDAS atmospheric fields, Climate Pre-
diction Center Merged Analysis of Precipitation fields, and observation-driven short-
wave and longwave radiation using the Air Force Weather Agency’s AGRicultural ME-
Teorological modeling system. These data are produced at 3-hourly intervals and ag-
gregated to a monthly time step. The latent heat simulation from the NOAH-LSM is
at 0.25° resolution and resampled using the “nearest neighbor” approach to 0.05° res-
olution for comparison purposes with the Berkeley model. The choice of resampling
assumes that spatial heterogeneity is driven primarily by vegetation.

The NDVI and EVI 0.05° resolution vegetation index inputs come from the Mod-
erate Resolution Imaging Spectroradiometer (MODIS) on board the Earth Observing
System-Terra platform (Huete et al., 2002). The vegetation indices are composited over
16 day periods. The NDVI and EVI data are distributed by NASA with complementary
information describing the reliability and quality of the data. Pixels are masked for low
data reliability, aerosols, clouds, and water bodies. A piecewise weighted least squares
regression filter (Swets et al., 1999) is applied to the datasets to further reduce atmo-
spheric interference on the vegetation signal.
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2.4 Statistical analysis

The analysis is done in three phases: (1) evaluation of the Berkeley model using station
data and comparison of ground inputs with surface reanalysis data, (2) sensitivity and
residual analysis of the Berkeley model, and (3) development of a combined model and
inter-model comparison. The observed data are from three sources: the African Mon-
soon Multidisciplinary Analysis (AMMA) programme (www.amma-international.org),
CarboAfrica (www.carboafrica.net) and Fluxnet (www.fluxdata.org). Table 3 lists the
field sites used to estimate micro-climate and energy fluxes and includes the station
I.D. and name, country, geographic coordinates, the period data is obtained, ecosystem
type using the International Geosphere-Biosphere Programme (IGBP) naming conven-
tion, and climatology.

Five of the sites (BW-Ma1, CG-Euc, NE-Waf, NE-Wam, and ZA-Kru) include half-
hourly measurements of surface air temperature (°C), incoming longwave and short-
wave radiation (W m'2), outgoing longwave and shortwave radiation (W m'z), relative
humidity (%), precipitation (mm), and latent heat (W m_z). NE-Wam and NE-Waf were
in close proximity and shared a rainfall gauge between them (Ramier et al., 2009).
LE was measured using the eddy covariance method (Baldocchi et al., 1988). With
this technique, latent heat flux is determined by correlating changes in water vapor
concentration at the surface and at height measured using hygrometers and a sonic
anemometer. The eddy covariance method is the most widely used method for measur-
ing LE in the field. There is on average, however, a 20 % difference between measured
turbulent fluxes (H and LE) and total available energy (Ry) for most sites (Wilson et al.,
2002). The data used are not corrected for energy balance closure, because all three
energy terms needed (Ry, H, and LE) were not available at most of the sites when the
data was accessed and no universal approach for correcting this problem has been
adopted. Half hourly (uncorrected) data from the flux towers are used, because the
Berkeley model computes latent heat flux from daytime Ry. Average daily (corrected)
data is typically filled using look-up tables (Reichstein et al., 2005) and/or artificial
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neural networks (Papale and Valentini, 2003), however these data are not available, so
persistent data gaps at some of the sites do exist.

The purpose of the first phase of the analysis is to extend comparison of the model
with micrometeorological data to semi-arid zones in sub-Saharan Africa and to qualita-
tively assess the performance of LE parameterizations (transpiration, wet canopy evap-
oration, and bare soil evaporation). The comparison also helped to identify sources of
error in the surface reanalysis to aid in the interpretation of the sensitivity and residual
analysis. Near infrared and red reflectance are not available from the stations, so NDVI
and EVI from MODIS are used to drive the local model run instead. Point to sensor
scale comparison are performed by taking the average of remote sensing and surface
reanalysis inputs over adjacent grid cells to the cell corresponding to the latitude and
longitude of the stations. The averaging covers a footprint typically larger than that of a
flux tower (<1000 m), however the averaging is deemed necessary, because many of
the stations fall on the border of two or more adjacent pixels. Each component of LE
is computed and compared visually with observed LE. The coefficient of determination
(HZ) and root mean squared error (RMSE) are the primary metrics used for compari-
son of monthly Fisher LE to observed LE. It is assumed that LE is the largest and the
primary seasonal component of LE. Wet surface evaporation is typically the smallest
component and is assumed negligible. Soil evaporation tends to track well with pre-
cipitation (Nagler et al., 2007), so precipitation is used as a proxy for LEg evaluation.
Each GLDAS input (Ry, T, specific humidity — g, and surface pressure — p) is plotted
against the micrometeorological data. The bias, RMSE, and correlation coefficient is
calculated for each.

The purpose of the second phase of the analysis is to identify those GLDAS inputs
that could potentially lead to large errors in the Berkeley model. A sensitivity analysis is
used to identify which GLDAS and MODIS inputs the Berkeley model is most sensitive
to. The outcome of interest in the analysis is: the model is sensitive to a particular
input that is also a large source of error, necessitating calibration. Minor improvements
during model calibration can also be made in the case that the input was erroneous
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but not an important contributor to AET variability by substituting the input with the
long-term mean. The residuals (observed LE minus Berkeley modeled LE) are plotted
against each input variable to identify the inputs that lead to the greatest errors in
modeled LE. Two cases of the sensitivity analysis are performed. In the unconditional
case, all input variables (Ry, T, q, p, NDVI, and EVI) are constrained to mean values
except for the test variable (Haan, 2002). The test variable is perturbed 10000 times
between +£3 o. The model output LE is regressed against the test input and the slope of
the relationship is computed to determine the relative weight of each input to the output.
In the conditional case, the test input or a combination of test inputs is constrained
to the mean and the remaining variables are allowed to run freely. This case tests
the sensitivity of the model to inputs taking into account any synergistic effects. All
combinations of test inputs are evaluated by taking the ratio of the standard deviation
of model output using model input(s) at their mean to the standard deviation of model
output if all inputs are left free. In the residual analysis, each MODIS and GLDAS
input is plotted against observed LE minus modeled LE. The correlation coefficient and
significance (p-test) are used to determine the relative strength of each relationship.

The first and second phases of the analysis are used to guide the development
of an LE hybrid model that combines LE components from the Fisher and GNOAH
models. A time series of modeled LE using Fisher, GNOAH, and the combined model
are plotted with observed LE for the eight micrometeorological stations. The coefficient
of determination and RMSE between observed and modeled LE at a monthly time step
are used to test the relative strength of each model and error respectively.

3 Results

3.1 Input and parameter comparison: field data

The three components (transpiration, wet canopy evaporation, and bare soil evapora-
tion) from the Berkeley model are plotted, along with observed LE and precipitation in
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Fig. 1. There is no surrogate for wet canopy evaporation and its low variability revealed
that it is merely a background signal in total LE. The magnitude and timing of modeled
LE for the five stations with sufficient data to drive the Berkeley model are captured
well at three of the five sites. At the driest sites (NE-Waf and NE-Wam), the timing is
captured well, but the magnitude of peak LE from the Berkeley model is less than 50 %
of actual peak LE. NE-Wam was not included in the figure because the results were
similar to NE-Waf. The average R? and RMSE across the five sites (BW-Ma1, CG-Euc,
NE-Waf, NE-Wam, amd ZA-Kru) are 0.78 and 36.81 Wm™2, respectively. The fallow
site (Ne-Waf) has the highest R? (0.93), reflecting the ability of the model to capture
timing, but also the highest RMSE (72.47 W m_z). The wooded site had the lowest R?
(0.65). ZA-Kru had the lowest RMSE (13.75 Wm'2), due in part to data gaps during
peak ET (wet season). During this season, sensors are frequently turned off to prevent
damage from lightning and power surges.

At the driest sites, the model tends to underestimate wet season LE (peaks) and
overestimate dry season LE (troughs). Latent heat from the eucalyptus plantation (CG-
Euc: included in Fisher et al., 2009) is overestimated fairly consistently throughout the
year. The time series at the two driest sites (NE-Wam and NE-Waf) are insufficient to
discern interannual patterns, but given the sparse vegetation and lack of an advection
term in the PET approach used, it is expected that the model underestimates peak
latent heat for both wet and dry years. The canopy component follows the timing of
total LE for all the sites, as expected, given the dominance of transpiration to total
LE. Without actual transpiration data, however, it is impossible to determine the rep-
resentativeness of Fisher LE; magnitudes. Assuming a lagged relationship between
soil evaporation and rainfall, LEg performs well at the sites with low vegetation density
and poorly at the sites with high vegetation density. Therefore, based on the limited
field data that is available, it appears that Fisher LE is at least capturing the timing of
observed LE well, while the Fisher LEg parameterization tends to suffer in vegetated
(humid) areas.
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The monthly GLDAS data used to drive the Berkeley model (Ry, Tyax, G, and p) are
plotted against observed data for ZA-Kru in Fig. 2. It is expected that GLDAS pressure
and specific humidity data correlates well with observed relative humidity. Actual spe-
cific humidity and surface pressure are not used for direct comparison, because these
data are not available for most of the sites. GLDAS Ry, T, and g showed good agree-
ment with observed data. The inverse relationship between p and relatively humidity
is present, but obscured by outliers above 98.0kPa (Fig. 2d). The outliers are from
the first year of the reanalysis when the GDAS reanalysis fields are used exclusively.
BW-Ma1 is the only other site that showed such a relationship. Table 4 summarizes the
results for all of the stations with sufficient field data for the comparison. Some of the
relationships are clearly non-linear, however statistics from a linear fit are chosen for
comparison purposes between inputs and across sites. Temperature from the GLDAS
dataset consistently shows high correlations across all the sites. Specific humidity is
the second best predicted input. The correlation between specific humidity from the
reanalysis and observed relative humidity are highest at the two driest sites (NE-Waf
and NE-Wam) and lowest (negative) at the most humid site (CG-Euc), which could be
due to the low variability in relative humidity and relatively larger homogenous area at
the dry sites. GLDAS R\ was the next best predicted model input. The longest time se-
ries (CG-Euc and ZA-Kru) had the highest correlations to observed Ry, but with large
biases. The longer time series and presence of outliers could therefore be inflating the
correlations. In either case, the general pattern (seasonality) in Ry is being predicted
well for these sites, but assuming all inputs are weighted equally, overestimates in mod-
eled LE are likely to occur. Conversely, the weak and negative relationships between
GLDAS Ry and observed Ry at the two driest sites lead to underestimates of Ry in
modeled LE. Reanalysis pressure by far has the poorest correlations with observed
data, as high biases are seen across all the sites.
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3.2 Sensitivity analysis

The comparison in Sect. 3.1 revealed that Fisher LE; performs the best of the three
LE components and that GLDAS temperature, which is used exclusively in the tran-
spiration component of the model, is the best performing input with available observed
data. This exploratory exercise indicates that Fisher LE, and LEg may be good can-
didates for re-parameterization. The second phase of the analysis shows the relative
contribution of inputs to model error. The results of the unconditional case of the sen-
sitivity analysis are shown in Table 5. The results of this test are shown for ZA-Kru and
are representative of the sites. The slope and intercept are generated from linear fits
of model output data to input data in normalized space. The slope of the fit therefore
represents the average expected increase in LE due to a standard deviation increase
in the test variable. The model is most sensitive to EVI and g, because these variables
have the largest slopes, while the model is least sensitive to p. Increases in NDVI
and T act to suppress LE, as indicated by the negative slopes. NDVI in the Berkeley
model is in the denominator of 75, since it is used to indicate overall absorption of in-
coming radiation by the canopy. As NDVI increases, g decreases, given NDVI is more
variable than EVI. Temperature is explicitly handled in the plant temperature constraint
function- increases in temperature above the optimum temperature leads to increases
in this constraint and lower LE. The results of the unconditional case are shown in
Fig. 3. Six input variables yield sixty-two possible combinations or model realizations.
The ratio of the standard deviation of the model when the test variable(s) are kept at
their mean to the standard deviation of the model if all inputs are allowed to run freely
represent the relative sensitivity of the model to that input or combination of inputs. The
evaluation of all possible combinations reveals important synergistic effects that may
enhance or suppress the predictability of LE. The various combinations are plotted
against modeled LE with all inputs allowed to run freely and R is computed as well, but
this chart was not included, because it did not contribute new information. Ratios less
than one indicate a reduction in predictive power, while ratios greater than one reveals
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dampening effects. As shown in Fig. 3, keeping g (input 2) and EVI (input 6) at their
mean has the largest impact on modeled LE, while T (input 3) and NDVI (input 5) act
to suppress modeled LE. EVI, which is used to compute the green fraction, explains
nearly 60 % of the model variability alone (combination 1, 2, 3, 4, 5). Keeping NDVI
and Ry at their mean (combination 4, 5) reveals no noticeable drop in modeled LE. The
model inputs for EVI and q are plotted against a time series of modeled LE (not shown).
EVI tends to capture the troughs in ET (dry season) when transpiration is significantly
larger than soil evaporation and specific humidity is better at capturing the peaks in ET
(wet season) when soil evaporation is a much larger component of the budget.

3.3 Hybrid model

The low dependence of the Berkeley model on surface pressure and spurious GNOAH
pressure data suggests that minor improvements in modeled ET could be made by
substituting long-term means in the GLDAS pressure data. The relatively poor param-
eterization of Fisher LEg and LE, and conflicting results of the GLDAS specific humidity
data in humid areas and strong dependence of the Berkeley model on specific humid-
ity, suggests that modest improvements in LE can be made by substituting LEg and
LE, driven by specific humidity in the Berkeley model with a parameterization that uses
a surrogate, such as precipitation or nighttime temperature. The GNOAH LEg and LE,
components are driven primarily by precipitation, are well conceived in the literature,
and therefore served as parameter substitutes in the Berkeley model. Time series of
observed LE and modeled LE using Fisher, GNOAH, and the combined model (Fisher
LE; + GNOAH LE, 5) for six of the eight stations are shown in Fig. 4. Table 6 in-
cludes goodness-of-fit statistics for six of the eight stations: ZM-Mon and NE-Wam are
omitted, because the former had less than one year of data and the latter showed no
noticeable difference from NE-Waf. Two of the stations (BW-Ma1 and CG-Tch) showed
obvious bad (flat) LE data at the beginning and end of the time series when the sen-
sors were just coming online or being neglected, so statistics are computed after these
points were omitted. The last month of CG-Tch was omitted as well, because the site

1564

HESSD
9, 15471587, 2012

Combining surface
reanalysis and
remote sensing data

M. Marshall et al.

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/1547/2012/hessd-9-1547-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/1547/2012/hessd-9-1547-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

was burned in July 2008, so that no grass remained until the site recovered in mid-
October (data not available for the analysis). Grass was absent and the soil humidity
is less than 2 % by volume, so H is the dominant energy flux.

The combined model outperforms the GNOAH model for the majority of sites and
equally as well for the remaining sites. The greatest improvements are made between
the Fisher and combined model, particularly in the reduction in RMSE. These improve-
ments are greatest at the sites with dense vegetation (CG-Euc and BW-Ma1). At these
sites, the combined model tends to underestimate the peaks and overestimate the
troughs. At the driest sites (NE-Wam, NE-Waf, and SD-Dem), all three models grossly
underestimate peak LE, however the combined model performs the best. The ma-
jor limitation of GNOAH, namely lack of a dynamic vegetation component, is reflected
on the time series at the ZA-Kru site. The smooth LE signal produced by the GNOAH
model does not capture the natural variability of this semi-arid site. The Berkeley model
represents the other extreme, as it overestimates the variability in observed LE. The
combined model is a compromise between the two. All three models tend to perform
poorest for CG-Tch, missing the peak in 2007 and the secondary peak in 2008.

4 Discussion

The study represents an initial attempt to use a suite of new flux tower data in sub-
Saharan Africa to improve AET estimation using remote sensing and surface reanaly-
sis data for regular near real-time continental scale monitoring. The integration of the
evaporation from GNOAH with the Fisher transpiration further improves the correla-
tions and reduces the RMSE for both humid and semi-arid sites. The fractional total
vegetation cover of the GNOAH model is the single most important variable controlling
transpiration. This is consistent with other findings that showed LAl was a strong con-
trol on the ratio of AET/PET at savanna sites (Williams et al., 2009). The use of clima-
tology to derive this component often suffers in semi-arid climates where variability in
vegetation can be high. This is most apparent at the savanna sites, where the GNOAH

1565

HESSD
9, 15471587, 2012

Combining surface
reanalysis and
remote sensing data

M. Marshall et al.

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/1547/2012/hessd-9-1547-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/1547/2012/hessd-9-1547-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

model shows a rather smooth annual signal. The introduction of a dynamic component
dramatically improves the correlation between observed and modeled LE. The Fisher
and GNOAH model use two different satellite sensors (AVHRR and MODIS), and this
undoubtedly plays a role in the results as well.

The greatest improvements in modeled LE using the combined model are at the sites
with dense vegetation classes. The predictability of LE for the various vegetation using
the combined model can be attributed in part to light and water limitation (Mu et al.,
2007b). Dense vegetation in the wet tropics is light limited because soil is sufficiently
wetted throughout the year, so one would expect that LE is driven primarily by A\
(Priestley-Taylor formulation for PET). Sparse vegetation in the dry tropics on the other
hand is water limited (humidity driven), because light is sufficient to maximize stomatal
conductance throughout the year and plants close their stomata in response to dry
conditions to conserve water and avoid stress. The poor performance of GLDAS Ry
and q at the dry and wet sites respectively further augments this relationship.

The use of GNOAH wet canopy evaporation (results not shown) improves correla-
tion with and reduces the RMSE in observed data, though not as significantly as soil
evaporation, reflecting its lower importance to total AET. The greatest improvement is
seen at the humid site (CG-Euc), which is a challenging region to model, albeit less
representative of land-cover in sub-Saharan Africa. The modest improvements can be
attributed to the substitution of poor GLDAS specific humidity data and poor parame-
terization of LEg with an improved LEg parameterization driven by a more reliable input
variable (precipitation). The small improvements made at the drier sites using the com-
bined model are more difficult to justify, because GLDAS showed higher correlations
with observed relative humidity and the performance of the Fisher LEg component is
relatively better at these sites. Erroneous GLDAS Ry appear to be a culprit at the drier
sites, but the insensitivity of LE to changes in PET formulization and lower sensitivity of
the Berkeley model to Ry, suggest that the use of GNOAH LEg may make some limited
contribution. Although the model is less sensitive to pressure, erroneous values can
lead to a 16 % difference between the Fisher and the combined model. This is most
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apparent in 2000 at ZA-Kru, where pressure values from the GDAS fields were several
kPA higher than for other years.

Improvements in GLDAS specific humidity and pressure fields will undoubtedly re-
duce the variability in future studies that use the Berkeley model driven by surface
reanalysis. Vapor pressure could be used, for example, from a study that recently de-
termined it from MODIS estimates of dew-point temperature in Korea (Ryu et al., 2008).
In the meantime, formulations for fygr and fgy, involving more certain surface reanaly-
sis inputs than specific humidity/pressure or precipitation, such as maximum and mini-
mum daily surface temperatures, could be used as a substitute. Idso et al. (1975) and
more recently Wang et al. (2007) have suggested that the diurnal temperature range
is a good indicator of soil moisture status. Under moderately dry to wet conditions,
minimum (nighttime) temperature is highly correlated with observed vapor pressure,
while midday temperature is indicative of saturation vapor pressure. A formulation for
LE that combines temperature driven soil and canopy components can be a powerful
tool at both point and grid cell resolution.

The large discrepancy of the models from peak AET at the driest sites could be due
to several factors. Although energy balance closure problems are typically associated
with errors in measuring turbulent fluxes, measurement error in Ry remains a possibil-
ity. Ramier et al. (2009) and Ardo et al. (2008) report only modest daily average energy
balance biases of 14.2Wm™ and 16.8 Wm™2 for NE-Wam and SD-Dem respectively,
which does not account for the model underestimation of peak LE by more than 30 %.
Another possibility in LE underestimates at NE-Wam and NE-Waf can be the result of
unexpectedly low average daytime net radiation during the wet season that appear to
result from large increases in longwave outgoing minus longwave incoming (ALW) near
sunset. The increase in absolute ALW can be attributed to increases in soil moisture
(lower sensible heat and longwave outgoing) and cloud cover (increased longwave in-
coming) that is typical during the wet season (Ramier et al., 2009). These factors could
lead to a drop in LE of nearly 17W m~2, assuming a one standard deviation drop in Ay
from the sensitivity analysis, which still does not account for the underestimation of
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LE. The largest contributor to the underestimation of LE is uncertainty in vegetation
dynamics: MODIS resolution data is too coarse to adequately capture the vegetation
in the presence of heterogeneous terrain, given the strong dependence of the model
on EVI and the sparse vegetation at these sites. Even with gross underestimation of
Ry and EVI, the comparison of observed data with the Berkeley model reveals that LE
remains difficult to model in semi-arid areas. The primary purpose of this paper is to in-
tegrate the existing components of the Berkeley model with an LSM. Therefore specific
improvements to Berkeley model LE, such as the use of the EVI ratio to formulate f¢
as in Mu et al. (2007b), calibration of the S in the GNOAH model for semi-arid regions,
or the use of different forcing and parameterization data, should be addressed in future
studies to reduce uncertainties in semi-arid regions.

In dry areas, it was expected that the advection term, which is included in the Pen-
man formulation for PET, would improve the hybrid model performance over Priestley-
Taylor PET. The Penman PET and its input parameters are not available from GLDAS,
so a simplified version of Penman PET described in Allen et al. (1998) was evalu-
ated with no improvement at the drier sites. Priestley-Taylor PET may be better at
large (satellite) scales, however, because PET at that scale is driven primarily by the
expansion of the convective boundary layer, which in turn is driven by Ry (Raupach,
2000). Future calibration can therefore include integration of Priestly-Taylor PET into
the GNOAH model.

The residual analysis is less revealing than the sensitivity analysis, as the relation-
ship between GLDAS data and model error are inconsistent across stations. This can
be due to a number of factors, including strong multi-collinearity which obscures the
effects of independent variables, and the inadequate length of many of the time series.
Some results of the residual analysis are worth discussion. For ZA-Kru, the longest
time series, heteroskedasticity is observed for all the variables except pressure. This
is not unexpected given the non-linearity of the model (larger values in the input can
lead to greater variability in the errors). The residual analysis for pressure revealed
an inconsistency between the first year and the remaining years of the model run,

1568

HESSD
9, 15471587, 2012

Combining surface
reanalysis and
remote sensing data

M. Marshall et al.

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/1547/2012/hessd-9-1547-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/1547/2012/hessd-9-1547-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

suggesting that improvements in pressure can be made by refining GLDAS synthesis
across datasets. Given the dependence of the Berkeley model on Ry from the litera-
ture it was initially suspected that PET could be an important source of model error.
The Penman version of PET described in Allen et al. (1998) and the Priestley-Taylor
formulation are compared against the model residuals and no significant relationship
are observed for either. This further corroborates the relatively lower sensitivity of the
Berkeley model to Ry than vegetation in tropics.

It is difficult to make a more detailed assessment on the performance of the com-
bined model, however, because the comparison is done using point data scaled up
to moderate and coarse data. Ideally, the satellite and surface reanalysis scale data
should capture the average of a grid cell corresponding to the station used for vali-
dation. This assumption is problematic and scaling flux tower data to coarser scales
therefore remains an active area of research. The greatest challenge is finding flux tow-
ers that lie within homogenous and flat terrain corresponding to the spatial resolution of
satellite or surface reanalysis data. If the fetch of the flux tower includes heterogeneous
and/or rough terrain, eddy formation can be highly variable and may not be consistent
with the areal average (Baldocchi et al., 1988). A possible solution can be to evaluate
these models using several flux towers within a grid cell, representing the various land
cover types and taking a weighted average to compare with coarser scale data. An-
other difficulty arises in the nature of the input variables. Many input variables, such
as NDVI, scale non-linearly (McCabe and Wood, 2006). Coarser scale inputs capture
regional estimates of ET well, so the model can be further validated using larger scale
surrogates of ET. For example, the combined model is recently used to develop a crop
stress index that successfully tracked multi-year district-level crop yield and identified
historical food insecure hotspots in Kenya (Marshall et al., 2011a). Runoff data, which
can be used with precipitation to validate the model using a water balance approach, is
extremely limited after the year 2000 for basins in sub-Saharan Africa. These data are
being used to evaluate the model in a future study which extends the ET time series
back to 1981 (Marshall et al., 2011b).
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The quantity and quality of field data remains an important obstacle in developing
an AET model for sub-Saharan Africa. Several sites that are part of CarboAfrica and
AMMA have not undergone any rigorous pre-processing. CG-Tch, for example, had
frequent failures with the sonic anemometer between December 2006 and July 2007,
which contributed to a lower monthly average, likely reflecting the models’ inability to
capture the peak LE at this time. Other stations which can help to calibrate and validate
AET models for other landcover classes and over larger areas are just coming online.
AMMA, for example, has deployed a network of stations in West Africa. At least one
of the sites has been scaled to grid resolution using readings from multiple locations
within the grid and land cover fractions. At the time this paper is written, the data from
those stations included all of the necessary inputs to run the Berkeley model, but did
not include LE necessary for model evaluation. In the next few years, when stations
have been online long enough, the process of model development should be revisited.

5 Conclusions

The need to understand energy and water fluxes in data sparse regions of the world
is an important field of research that demands the use of cost-effective and efficient
modeling approaches. In this paper, a new approach to modeling AET, an important
energy and moisture flux, has been introduced. For the first time, an AET model has
been evaluated using the eddy covariance technique over areas representing major
land-cover classes in sub-Saharan Africa. The paper highlights many of the obstacles
and limitations of such an analysis. Even with these shortcomings, a model, which
combines LE components driven by remote sensing vegetation and precipitation re-
analysis has been developed that provides better AET estimates than the individual
models. Perhaps the most important contribution of this work is the assessment of
the two models across diverse land-cover types and climatic zones. Several potential
limitations in each AET model are identified. Namely, these are the use of vegetation
climatology to model transpiration in semi-arid regions instead of dynamic vegetation
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and the use of specific humidity reanalysis to model soil evaporation in humid areas.
Ry reanalysis is of limited use in semi-arid regions, though its contribution to overall
model error is less than vegetation and specific humidity. Future work will evaluate
the model using historical forcing and test data. This will allow researchers for the first
time to make reliable estimates of the surface water budget and to conduct water bal-
ance and water resource assessment type studies across sub-Saharan Africa. In the
meantime, the current model is being used in conjunction with precipitation indices to
enhance crop monitoring in sub-Saharan Africa.
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Table 1. Model parameters and equations for the Berkeley Model, where 1 =Tqpr, my =1.2,

my=1.2, b, =-0.05, and 8 =1.0.

Parameter Description Equation

f. Fractional total vegetation cover fieAR

Ty Green canopy fraction fapar/TipaR

fr Plant temperature constraint e‘(@)2

m Plant moisture constraint Tarar!TaPAR MAX

fapAR Fraction of PAR absorbed by green vegetation cover m4EVI

fiPAR Fraction of PAR intercepted by total vegetation cover m, NDVI + b,

fsm Soil moisture constraint RHYPP/A

foet Relative surface wetness RH'®

Topt Optimum plant growth temperature Tuax @ max{PAR x fapar * Tyax/VPD}
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Table 2. Model parameters and equations for the Noah Model, where k is Beer’'s Law extinc-
tion coefficient, LAl is the leaf area index, r is the atmospheric resistance, Rgis the stomatal
resistance, C,, is the surface exchange coefficient for heat and moisture, ©, is the soil moisture
in the top soil layer at a given timestep, ©,y is the wilting point, ©zer is the field capacity, and f
is a scaling constant typically equal to 1 or 2. The change in water holding capacity is defined
by P (precipitation), D (drainage) and LE (in mass units).

Parameter Description Equation

s Fractional total vegetation cover e~

Bg Plant coefficient Bg = W

B Soil moisture availability (% f

We Water holding capacity fcP —D-LEg

S Maximum water holding capacity ~Optimized constant
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Table 3. Eight micrometeorological stations throughout sub-Saharan Africa. Ecosystems are
identified with the IGBP convention: croplands/natural vegetation mosaic (CRO), evergreen
broadleaf forest (EBF), open shrublands (OSH), savanna (SAV), and woody savanna (WSA).
P and T, are the annual total precipitation and average air temperature respectively.

ID Name Country Latitude Longitude Period IGBP P (mm) T, (°C) Source
BW-Mat Maun-Mopane Woodland Botswana 19.93°S  23.57° E 20002001 WSA 464 22.0 Fluxnet
CG-Euc Kissoko Eucalyptus Plantation Congo 4.79°S 11.98°E 2004-2006 EBF 1274 235 CarboAfrica
CG-Tch Tchizalamou Congo 4.29°S 11.66°E 2006-2008 SAV 1150 25.7 CarboAfrica
NE-WaF Wankama Fallow Niger 13.65°N 2.63°E 2006 CRO 519 28.5 AMMA
NE-WaM Wankama Millet Niger 13.64°N 2.63°E 2006 CRO 519 28.5 AMMA
SD-Dem Demokeya Sudan 13.28°N  30.48°E 2005-2008 SAV 320 26.0 CarboAfrica
ZA-Kru Skukuza South Africa  25.02°S ~ 31.50°E 2000-2008 SAV 547 21.9 CarboAfrica
ZM-Mon Mongu Zambia 15.44°S  23.25°E 2007-2008 DBF 945 25.0 CarboAfrica
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Table 4. Summary statistics of Berkeley model inputs from field data versus Noah reanalysis
data. B, and B, are the slope and intercept of the linear fit and N is the number of monthly
samples. The statistics for Noah pressure and specific humidity were derived using relative
humidity from the field.

Station ID Ry Wm™) T (C) g (kgkg™')  p (kPa)
BW-Ma1 (N =23)

R 0.06 0.85 0.50 -0.11
B, 0.10 0.96 0.02 -0.33
B, 211.78 0.19 0.0067 91.17
RMSE 88.71 2.20

CG-Euc (N =30)

R 0.72 0.72 -0.46 0.52
B, 0.23 0.62 -0.04 4.02
B, 169.17 11.24 0.04 97.92
RMSE 42.99 1.61

NE-Waf (N = 12)

R -0.38 0.97 0.94 0.29
B, -0.18 1.07 0.03 0.26
B, 276.28 -0.90 0.002 98.23
RMSE 81.80 1.98

NE-Wam (N = 11)

R -0.17 0.93 0.98 0.27
B, 0.0012 1.13 0.03 0.23
B, 243.81 -2.28 0.0013 98.12
RMSE 109.52 2.71

ZA-Kru (N = 44)

R 0.88 0.70 0.71 0.06
B, 1.29 0.44 0.02 -0.58
B, 83.43 13.94 0.0029 97.11
RMSE 118.46 2.33
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Table 5. The slope (B,) and intercept (B,) of a linear fit of modeled LE using the mean for all
input data and 10000 perturbations of one test input variable (/) versus the test input variable

in standard space.

i B, (Wm™) B, (Wm™)
EVI 29.61 92.61
NDVI -9.88 74.63
Ry (Wm™2) 16.77 74.63
p (kPa) 0.73 78.78
q (kgkg™) 24.65 85.81
T (°C) -16.18 78.78
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Table 6. Summary results from the comparison of observed monthly LE to the Fisher, Noah,

and hybrid (Fisher LE; + Noah LE ).

Station ID Fisher Noah Hybrid
BW-Ma1

R? 0.70 0.75 0.76
RMSE 30.03 23.58 22.06
% error 32.23 27.79 24.99
CG-Euc

R? 0.53 0.71 0.80
RMSE 42.15 67.89 25.31
% error 29.85 53.10 16.44
CG-Tch

R? 0.34 0.39 0.38
RMSE 101.34 29.13 65.27
% error 163.85 40.25 92.82
NE-Waf

R? 0.82 0.91 0.91
RMSE 85.71 94.97 74.38
% error 67.82 71.20 56.02
SD-Dem

R? 0.55 0.53 0.60
RMSE 58.69 67.93 51.56
% error 54.84 65.86 45.00
ZA-Kru

R? 0.44 0.45 0.55
RMSE 48.40 34.80 36.00
% error 87.70 59.80 56.67
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Fig. 2. Plot of Berkeley model inputs from monthly field data versus Noah reanalysis data for
ZA-Kru. Net radiation (a), maximum daily temperature (b), specific humidity (¢), and surface

pressure (d).
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Fig. 3. Conditional case of the sensitivity analysis. The model was run with input variables kept
at their average values. Sensitivity on the y-axis is defined as the ratio of the standard deviation
of modeled LE with input(s) at their average value to the standard deviation of modeled LE for
all possible combinations of input variables. Ratios equal to one, indicate no change from the
unconstrained model (leftmost bar graph), while ratios less than one indicate a reduction in
predictive power and ratios greater than one indicate damping effects. The input variables are
numbered: p (1), g (2), T (3), Ay (4), NDVI (5), and EVI (6).
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